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Abstract. An analytical approach is presented for the study of magnetization dynamics driven by spin-
polarized currents. Two cases are considered: (i) magnetic layers with in-plane uniaxial anisotropy; (ii)
magnetic layers with uniaxial anisotropy and applied field perpendicular to the layer plane. Theoreti-
cal predictions are obtained for the existence of stationary modes and self-oscillations of magnetization
by solving the deterministic Landau-Lifshitz-Gilbert equation with Slonczewski spin-torque term. Ther-
mal fluctuations are studied by deriving the corresponding Fokker-Planck equation for the magnetization
probability distribution. Analytical procedures to estimate the effective potential barrier separating self-
oscillatory regimes and/or stationary modes are proposed.

PACS. 75.60.Jk Magnetization reversal mechanisms – 85.70.Kh Magnetic thin film devices: magnetic
heads

1 Introduction

As theoretically shown by Berger [1] and Slonczewski [2],
the torque exerted by spin-polarized electrons can sub-
stantially influence the magnetization dynamics in a fer-
romagnetic nanoelement. This interaction, known as spin
transfer arises when the linear dimensions of the ferromag-
netic element are of the order of tens of nanometers and
the current density is of the order of ∼107 ÷ 108 A cm−2.

After these theoretical predictions, several experiments
were performed to investigate the magnetization dynam-
ics in nanomagnets driven by the joint presence of spin-
polarized currents and external magnetic fields [3–7].
In these experiments, carried out for both nanopillar
structures and point-contact geometries, a rich variety
of dynamical regimes were observed, namely, switching
and self-oscillations of the magnetization with, in some
cases, hysteretic transitions between stationary states and
steady-state auto-oscillations. In parallel with these ex-
perimental investigations, a great deal of theoretical work
has been developed to study phenomena directly related
to spin-transfer [8–13].

Despite its quantum origin, the spin-transfer torque
can be classically modeled by adding an appropriate term
to the Landau-Lifshitz-Gilbert (LLG) equation [2] for the
ferromagnetic element subject to the spin-polarized cur-
rent. Solutions of this modified LLG equation can be ob-
tained through numerical integration [14–16]. However,
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it has been shown that under the condition of spatially
uniform magnetization, the modified LLG equation can
be analytically solved [17–19]. Although they represent a
particular case, spatially uniform solutions can be a good
approximation to the magnetization dynamics in nanopil-
lar devices, where the small spatial dimensions involved
strongly penalize magnetization nonuniformities.

For the small volumes involved in spin-transfer devices,
thermal fluctuations may induce transitions between dif-
ferent dynamical regimes, as shown by experimental ob-
servations [20–22]. To take into account the effect of tem-
perature on the magnetization dynamics, a random torque
term can be added to the modified LLG equation, in anal-
ogy to what was proposed by Brown [23] for the study of
thermal fluctuations in fine particles. In these systems,
when no spin-polarized current is injected, magnetization
dynamics admit the coexistence of a certain number of
stationary equilibrium states, and the effect of thermal
fluctuations can be estimated by comparing the energy
barrier separating these equilibria with kBT (kB is the
Boltzmann constant and T the absolute temperature). In
particular, in the limit of large energy barriers, the time
scale of the thermal relaxation is given by the Arrhenius
formula τ = τ0 exp(∆E/kBT ), which expresses the relax-
ation time τ in terms of the height ∆E of the energy
barrier and a characteristic time constant τ0 (typically
τ0 ∼ 10−10 ÷ 10−11s) [24,25]. The situation is drastically
modified when the spin-polarized current is injected. In
this case, self-oscillatory regimes may appear in addition
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to stationary equilibria and thermal fluctuations can in-
duce switching between these steady states of different
nature. The main problem is to define the concept of ef-
fective potential barrier between a self-oscillatory regime
and a stationary equilibrium, or between two oscillatory
regimes.

An analytical approach to the study of thermal fluc-
tuations in spin-torque devices was proposed by Li and
Zhang [26]. Starting from a stochastic LLG equation
with the spin-torque term, they derived the correspond-
ing Fokker-Planck equation for the magnetization proba-
bility distribution [26]. They obtained that the stationary
probability density corresponds to the Boltzmann distri-
bution with an effective temperature which depends on
the injected current. Finally they calculated the transi-
tion rates between two stationary equilibria. Apalkov and
Visscher [27,28] proposed an approach based on a Fokker-
Planck equation in energy [29]. By assuming that the
magnetization probability density depends only on energy,
they calculated the expression for the effective tempera-
ture which appears in the Boltzmann distribution for the
stationary probability density. On the other hand, Krivo-
rotov et al. [22] obtained experimental results which can
be reasonably explained by assuming that thermal switch-
ing is activated and governed by the sample temperature
and a current-dependent activation barrier rather than an
effective temperature which depends on the current.

In this article, we describe a mathematical approach
to study spin-torque-driven magnetization dynamics. In
particular, we discuss an analytical treatment to describe
magnetization dynamics in the deterministic case. In spite
of the nontrivial mathematical structure of the determin-
istic LLG equation with the spin-torque term, this prob-
lem was solved by taking advantage of Poincaré-Melnikov
theory for slightly dissipative nonlinear systems [18]. On
this mathematical basis, it becomes possible to study an-
alytically the occupation probability for stationary equi-
libria as well as self-oscillatory regimes [30,31]. In this two
works it was proved that the stationary probability density
is formally coincident with the Boltzmann distribution,
but involves an effective potential which contains a non-
equilibrium current-dependent part. Knowledge of this ef-
fective potential permits one to quantify the probability
of occupation of each stationary state and the probability
of transition between different states.

In Section 2, we describe the methods used for
the analysis of spin-torque-driven magnetization dynam-
ics in absence of fluctuations, to determine magnetiza-
tion steady states, that is, stationary states and self-
oscillations. In Section 3, by using the stochastic LLG
equation, we investigate the occurrence of thermally in-
duced magnetization switching between these different
steady states. In particular, we obtain the expression for
the effective potential which governs the stochastic pro-
cess and for the transition rates from one steady state to
another one. The approach discussed in these two Sections
is applied to the case in which the ferromagnetic element
is a thin film which presents in-plane anisotropy. Finally,
in Section 4 we describe deterministic and stochastic dy-

namics in thin films with perpendicular anisotropy and
uniaxial symmetry.

2 Deterministic dynamics

We consider, as in reference [2], a three-layer structure
composed by two ferromagnetic layers separated by a non-
magnetic spacer. The current passes through the layers in
the direction perpendicular to the layers plane and it ac-
quires a certain degree of spin polarization by interacting
with the magnetization of the so-called “fixed-layer”. This
magnetization is assumed to be fixed along a given di-
rection. Conversely, the magnetization of the “free-layer”
exhibits various dynamical regimes induced by the spin-
transfer torque. By following the approach developed by
Slonczewski [2], the magnetization dynamics in the free-
layer, whose magnetization is assumed to be spatially uni-
form, is described by the LLG equation with the addition
of the spin-transfer torque. In dimensionless form, this
equation is expressed as:

dm
dt

− αm × dm
dt

= −m ×
(
heff − β

m × ep
1 + cpm · ep

)
, (1)

where the free-layer magnetization m and the effective
field heff are normalized by the saturation magnetiza-
tion Ms, time is measured in units of (γMs)−1 (γ is the
absolute value of the gyromagnetic ratio), α is Gilbert
damping constant (generally α � 1), and the unit vec-
tor ep gives the direction of the spin polarization. In
the purely ballistic model originally proposed by Slon-
czewski [2], cp = (1 + P )3/[3(1 + P )3 − 16P 3/2] and
β = 4(Je/Jp)P 3/2/[3(1+P )3−16P 3/2], where P (0 < P <
1) is the degree of spin polarization in the ferromagnet,
Je is the electric current density, taken as positive when
the electrons flow from the free into the fixed layer, and
Jp = µ0M

2
s |e|d/� (µ0 is the vacuum permeability, e is the

electron charge, d is the thickness of the free layer, and �

is reduced Planck constant). Typically, Jp � 109A cm−2,
which means that β � 1 for the typical current densities,
Je � 108A cm−2, employed in experiments. The effective
field is given by heff = −∂gL/∂m, where:

gL(m;ha) = (Dxm
2
x +Dym

2
y +Dzm

2
z)/2 − ha · m (2)

is the free-layer energy density normalized by µ0M
2
s . By

assuming that both shape and crystal anisotropy have the
same ellipsoid-like symmetry, we can describe their joint
effect through the quadratic term in equation (2), whereas
the linear term gives the interaction with the external field
ha. It is useful for the following discussion to introduce the
function:

ΦST (m) = ln(1 + cpm · ep)/cp. (3)

In terms of ΦST , equation (1) becomes:

dm
dt

− αm × dm
dt

= m ×
(
∂gL
∂m

+ βm × ∂ΦST
∂m

)
. (4)
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Fig. 1. (a, b) Magnetization trajectories of the conservative LLG dynamics on the unit sphere for ha = hay ey and 0 < hay <
Dz − Dy < Dy − Dx. Filled dot: energy minimum; open dot: energy maximum; cross: energy saddle; bold lines: separatrices.
System parameters: Dx = −0.7, Dy = 0.3, Dz = 0.95, µ0Ms = 1.76 T, hay = 0.2. (c) Corresponding graph. s1, s2: energy
minima; d1, d2: saddles; u1, u2: energy maxima. I1, I2, I3, I4, I5: energy regions.

Since the injected current and the applied field are time
independent, equation (1) (or equivalently Eq. (4)) de-
scribes an autonomous open dynamical system, forced far
from equilibrium by the injected current, which evolves
onto the surface of the unit sphere |m|2 = 1. The topo-
logical consequences of this fact are (Poincaré-Bendixson
theorem [32]) that chaos is precluded and the only possible
states reached by the magnetization are either stationary
modes associated with static solutions (fixed points) of
equation (1) or self-oscillations associated with periodic
solutions (limit cycles) of equation (1). The key point is
to determine these two types of magnetization response
for different values of current and field [18].

In this respect a basic role is played by the fact that
α � 1 and β � 1. This implies that the dynamics de-
scribed by equation (1) can be viewed as a perturbation
of the conservative one, obtained by setting α = β = 0
in equation (1): dm/dt = −m × heff [18]. Therefore, a
complete knowledge of the unperturbed dynamics is a
necessary prerequisite in order to understand the non-
conservative motions.

The conservative trajectories are closed curves given
by the intersection between the unit sphere |m|2 = 1 and
the energy surface gL(m,ha) = g (see Eq. (2)), for various
g and for fixed external field. Exact analytical solutions of
this dynamics have been obtained when the external field
is parallel to one of the principal axes of the energy sur-
face [19,36]. In general, the conservative phase portrait
may present six fixed points: two minima, two saddles,
and two maxima. The trajectories passing through the
saddles are called separatrices because they create a nat-
ural partition of the phase portrait into different energy
regions (central regions), which are filled by a continuum
of closed trajectories. In the most general case, five cen-
tral regions are present in the phase portrait: two regions
around energy minima, two regions around energy max-
ima, and one region between the two separatices which
does not contain equilibria. In Figures 1a, 1b is shown an
example of conservative phase portraits onto the surface
of the |m|2 = 1 sphere, when Dx < Dy < Dz and the
external field, aligned to the y-axis, satisfies the condition
0 < hay < Dz−Dy < Dy−Dx. Under increasing field, the

number of fixed points is reduced from 6 to 4 and then to
2. In Figure 2a is shown an example of conservative phase
portraits onto the surface of the |m|2 = 1 sphere where
only 4 fixed points are present. In particular, the applied
field is applied along the x-axis and satisfies the condition
Dy −Dx < hax < Dz −Dx, with Dx < Dy < Dz.

A natural way to describe the topological properties
of the conservative phase portrait is to specify an asso-
ciated graph G [39]. In this graph, each edge represents
a central region whereas each node corresponds to a sad-
dle. We denote with Ik the kth central region (or graph
edge) and with [g−k , g

+
k ] the corresponding interval for the

energy g, that is, m ∈ Ik implies g−k � g � g+
k . The

conservative trajectory inside the kth central region for
which gL(m;ha) = g is indicated by Ck(g). In this re-
spect, we notice that each magnetization state m can be
uniquely identified by specifying the value of the free en-
ergy g = gL(m;ha), the index k of the branch of the graph
G to which m belongs, and the position of m on the curve
Ck(g). The latter information can be given by introduc-
ing an azimuthal-like parameter ψ, assumed to vary in the
interval [0, 2π], which is used to give a parametric descrip-
tion of the curve Ck(g). Examples of graphs are shown in
Figures 1c and 2b, corresponding to the conservative phase
portrait of Figures 1a, 1b and 2a, respectively.

On the basis of these general considerations, we go
back to the study of the spin-torque driven magnetiza-
tion dynamics. In particular, we determine the two types
of magnetization response, that is, fixed points and limit
cycles.

The fixed points m0 of the dynamics represent sta-
tionary magnetization states. They are calculated by set-
ting dm0/dt = 0 into equation (1). Once the position of
fixed points is obtained, we must determine their stability
and calculate the bifurcation conditions which modify the
number of fixed points (saddle-node bifurcations) or their
stability (Hopf bifurcations) [32]. This kind of local bifur-
cations can be studied by linearizing equation (1) around
each fixed point and by studying the corresponding sta-
bility matrix.

Limit cycles represent steady-state self-oscillations of
the magnetization. The existence of this self-oscillatory
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Fig. 2. (a) Magnetization trajectories of the conservative LLG
dynamics on the unit sphere for ha = hax ex and Dy − Dx <
hax < Dz − Dx. Filled dot: energy minimum; open dot: en-
ergy maximum; cross: energy saddle; bold lines: separatri-
ces. System parameters: Dx = −0.034, Dy = 0, Dz = 0.68,
µ0Ms = 1.76 T, hax = 0.2. (b) Corresponding graph. s1: en-
ergy minimum; d1: saddle; u1, u2: energy maxima. I1, I2, I3:
energy regions.

regime is related to the energy balance equation, obtained
from equation (4):

dgL
dt

= −α
∣∣∣∣dmdt

∣∣∣∣
2

− β

(
m × ∂ΦST

∂m

)
· dm
dt
. (5)

Equation (5) shows that the system free energy may in-
crease or decrease during magnetization motion and un-
der appropriate conditions the spin-torque contribution
may provide energy to the system and counterbalance the
damping process. If this occurs, the system can reach a
steady periodic motion which we denote by mp(t). In this
case also gL(mp(t);ha) is periodic and so its derivative
in time has zero average on one period. In other terms, a
necessary condition for the existence of a periodic solution
mp(t) of equation (5) with period Tp is that:

∫ Tp

0

(
α

∣∣∣∣dmp(t)
dt

∣∣∣∣
2

+ β
mp(t) × ep

1 + cpmp(t) · ep · dmp(t)
dt

)
dt = 0.

(6)
This condition is quite evident from the physical point of
view: periodic steady-state solutions require an average
balance between loss and gain of energy. For slightly dis-
sipative systems as the one described by equation (1), the
periodic trajectory mp(t) is close to a certain conservative
trajectory mk(t, g) of energy g. Thus no significant error is
made if mk(t, g) is used instead of mp(t) in equation (6).
Therefore, if we introduce the so-called Melnikov function
Mk(g,ha, β/α):

Mk(g,ha, β/α) =
∫ Tk(g)

0

(∣∣∣∣dmk(t, g)
dt

∣∣∣∣
2

+
β

α

mk(t, g) × ep
1 + cpmk(t, g) · ep · dmk(t, g)

dt

)
dt, (7)

where Tk(g) is the period of the conservative trajectory,
we expect that Mk(g,ha, β/α) � 0 for self-oscillations.

These heuristic considerations can be given a rigorous
form by making use of Poincaré-Melnikov theory [18,32]
for slightly dissipative systems. This theory proves that
the zeros of the Melnikov function correspond to limit cy-
cles of the perturbed magnetization dynamics (Eq. (1)),
provided α and β are small enough. These limit cycles
are α-close to the conservative trajectory Ck(glc) corre-
sponding to the value of energy glc for which the Mel-
nikov function vanishes. More precisely, the Poincaré-
Melnikov theory leads to the two fundamental results: (i)
in the limit α → 0, β → 0, β/α → const., the equa-
tion Mk(glc,ha, β/α) = 0 represents the necessary and
sufficient condition for the existence of a periodic solu-
tion (limit cycle) of equation (1) inside the kth central en-
ergy region; (ii) the limit cycle is asymptotically coincident
with the trajectory Ck(glc) of the conservative dynamics
and is stable (unstable) when ∂Mk(glc,ha, β/α)/∂glc > 0
(< 0) [18]. Finally we notice that the Melnikov function
vanishes at fixed points, that is, Mk(gFP ,ha, β/α) = 0,
where gFP is the energy of a given fixed point.

Physically, Mk(g,ha, β/α) represents the rate of
change of the system free energy averaged over one preces-
sional period. It is worth remarking that we can transform
the time integral appearing in equation (7) into a line in-
tegral along Ck(g):

Mk(g,ha, β/α) =
∮
Ck(g)

(
m × ∂Φ

∂m

)
· dm, (8)

where:

Φ(m;ha, β/α) = gL(m;ha) +
β

α
ΦST (m). (9)

Therefore, the computation of Mk(g,ha, β/α) does not re-
quire the knowledge of the dependence of mk(t, g) on time
but only the geometric shape Ck(g) of the trajectory on
the unit sphere. The curve Ck(gFP ) reduces to a point
when its corresponding energy equals the energy gFP of
a fixed point. Therefore, in this case the integral of equa-
tion (8) becomes identically zero and we obtain one more
time that the Melnikov function vanishes at fixed points.

By making use of these results, it is possible to ana-
lytically construct the complete stability diagram, in the
current-field control-plane, for spin-transfer-driven mag-
netization dynamics, since the Melnikov function pro-
vides all the information to determine the position of
the bifurcations involving limit cycles, that is, Hopf,
saddle-connection, and semi-stable limit-cycle bifurca-
tions [32], [18]. In particular, we computed the stability
diagram when the fixed-layer magnetization and the free-
layer anisotropy are in-plane and the external field is par-
allel to the free-layer easy axis or perpendicular to the
plane [18,19,33,34].

The Poincaré-Melnikov theory provides a method to
predict the average energy associated with steady magne-
tization self-oscillations, but gives no information about
the energy relaxation from any given initial condition and
this final state. However, as a consequence of the fact that
α � 1 and β � 1, with ratio β/α of the order of unity,
an approximate analytical approach can be followed to
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obtained an equation which describes the time evolution
of the energy. This approach is based on the fact that,
due to the smallness of α and β, two widely different time
scales are present in the dynamics: a fast one, over which
precessional motion of the magnetization occurs, and a
slow one, over which appreciable energy changes occur.
This means that the magnetization executes many pre-
cessional oscillations before reaching the final state. Be-
sides, in one precessional period the motion is very close
to the conservative one. For this reason, no essential in-
formation on the energy evolution is lost if we take the
average of equation (5) over one precessional period and
we use the results obtained for the conservative dynam-
ics to express the magnetization time dependence [35,36].
The result of this averaging is that the averaged energy
follows the equation:

dg

dt
= −αMk(g,ha, β/α)

Tk(g)
, (10)

where Mk(g,ha, β/α) is precisely the Melnikov function
previously introduced and Tk(g) represents the period of
the conservative motion of energy g inside the kth energy
region. Equation (10) can be rewritten in the form:

dg

dt
= −α∂Uk

∂g
, (11)

where we have introduced the effective potential Uk(g)
defined, up to a constant, as:

Uk(g) =
∫ g

g−k

Mk(u,ha, β/α)
Tk(u)

du. (12)

Equation (11) shows that, to the first order in α, the en-
ergy follows a viscous-like dynamics governed by the ef-
fective potential Uk(g). This approximate description will
be the more accurate, the smaller α, or, equivalently, the
faster the magnetization precession with respect to the
energy relaxation characteristic time. In particular, this
description fails when we consider trajectories close to
one of the separatrices, since in this case the trajectory
period tends to infinity. Finally, we notice that the ex-
trema of Uk, given by ∂Uk/∂g = 0, correspond to fixed
points and limit cycles of the complete dynamics, as re-
sult from the Poincaré-Melnikov theory. More precisely,
dU2

k/dg
2 = (dMk/dg)/Tk(g) when calculated for energy

values corresponding to limit cycles or fixed points. On the
other hand, dMk/dg > 0 for stable states and dMk/dg < 0
for unstable ones. Therefore, minima and maxima of Uk
correspond to stable and unstable steady states, respec-
tively.

3 Effect of thermal fluctuations

The analytical predictions discussed in the previous sec-
tion were obtained without taking into account the role of
temperature. To describe the effect of thermal fluctuations
on spin-torque-driven magnetization dynamics, we follow

an approach inspired by Brown’s one [23] for the treat-
ment of thermal switching in fine particles. The basis of
this approach is to add a random magnetic torque to the
LLG equation and to study the ensuing stochastic magne-
tization dynamics. The separation of time scales leading
to equation (10) for the deterministic dynamics is also a
property of the stochastic dynamics. This permits one to
derive a relaxation-diffusion equation for the energy and
to identify the effective potential analogous to Uk(g) in
equation (11) which controls the thermal fluctuations of
the system around a steady state and the transition prob-
abilities from one steady state to another consequent to
thermal effects.

As first step, we rewrite equation (4) in a form explicit
with respect to dm/dt. Since α and β are small quantities,
one can approximate this equation to the first order in α
and β, obtaining:

dm
dt

= m × ∂gL
∂m

+ αm ×
(
m × ∂Φ

∂m

)
, (13)

where Φ is given by equation (9). Then we add the random
magnetic torque −νm × hN (t), where hN (t) represents
Gaussian white noise, that is, hN (t)dt = dW, where dW
represents the increment of the standard isotropic vector
Wiener process W(t), with 〈|dWi|2〉 = dt (i = x, y, z). The
intensity of thermal effects is measured by the parameter
ν [37]. Therefore we obtain:

dm
dt

= m× ∂gL
∂m

+αm×
(
m × ∂Φ

∂m

)
−νm×hN(t). (14)

By interpreting this Langevin equation (14) in the sense
of Stratonovich [37,38] we can apply the ordinary rules of
calculus [37] to obtain d|m|2/dt = m · dm/dt = 0. Thus,
the magnetization magnitude is still conserved and the
magnetization motion keeps on taking place onto the sur-
face of the unit sphere |m|2 = 1, as for the deterministic
dynamics. The associated Fokker-Planck for the probabil-
ity density W (m, t) is [37]:

∂W (m, t)
∂t

= −divΣJ, (15)

where the symbol divΣ represents the divergence operator
acting on the surface Σ of the unit sphere. The probability
current is given by:

J = (m ×∇ΣgL − α∇ΣΦ)W − ν2

2
∇ΣW, (16)

where the symbol ∇Σ represents the gradient operator
acting on Σ. The value of the constant ν is obtained from
the fluctuation-dissipation theorem in the thermodynam-
ics equilibrium, corresponding to the case of β = 0:

ν2 =
2αkBT
µ0M2

s V
, (17)

where V is the volume of the nanomagnet. For the follow-
ing analysis we will assume that the damping constant α
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as well as the statistical properties of the noise term in
equation (4), and in particular the value of ν expressed by
equation (17), are not affected by the injection of the cur-
rent. In the sequel we will also use the notation µ = 2α/ν2.

In order to study the Fokker-Planck equation (see
Eqs. (15–17)) in the limit of small fluctuations and small
nonconservative effects (α � 1, ν ∼ √

α), and thus to
take advantage of the fact that stochastic magnetization
dynamics given by equation (14) is a perturbation of con-
servative dynamics, it is convenient to use a coordinate
system on the unit sphere in which energy is one of the
coordinate variables. We introduce the unit vectors:

eg =
∇ΣgL
|∇ΣgL| , eψ = m × eg, (18)

orthogonal and tangential to the line Ck(g), respectively.
The differential displacements (dmg, dmψ) of m along eg
and eψ, associated with infinitesimal changes (dg, dψ) of
the coordinates, are respectively given by:

dmg = eg · dm = lgdg , dmψ = eψ · dm = lψdψ, (19)

where lg and lψ are appropriate “metric factors”. From
equation (18) one finds that:

lg = 1/|∇
Σ
g
L
|. (20)

By using this coordinate system we can rewrite equa-
tions (15) and (16) in terms of the the coordinates (g, ψ)
and of the index k labeling the energy region to which
(g, ψ) refer:

∂ρk
∂t

= − ∂

∂g
(lψJk,g) − ∂

∂ψ
(lgJk,ψ) , (21)

where:
ρk(g, ψ, t) = Wk(g, ψ, t) lglψ (22)

is the probability density as a function of (g, ψ),
Wk(g, ψ, t) is the function W (m, t) after m is expressed
in the new coordinates (g, ψ), whereas:

Jk,g = J · eg = −αWk

lg

∂Φ

∂g
− ν2

2
1
lg

∂Wk

∂g
(23)

and

Jk,ψ = J · eψ =
Wk

lg
− αWk

1
lψ

∂Φ

∂ψ
− ν2

2
1
lψ

∂Wk

∂ψ
(24)

are the probability currents along eg and eψ, respectively.
In this formalism the Melnikov function (Eq. (8)) takes
the form:

Mk(g,ha, β/α) =
∮
Ck(g)

1
lg

∂Φ

∂g
dmψ, (25)

M0
k (g,ha) =

∮
Ck(g)

|∇Σg|dmψ, (26)

where M0
k (g,ha) = Mk(g,ha, β/α = 0). The probability

densities ρk(g, ψ, t) and Wk(g, ψ, t) satisfy the following
normalization conditions:

∑
k

∫
Ik

∫ 2π

0

ρk(g, ψ, t)dgdψ = 1, (27)

∑
k

∫
Ik

∫ 2π

0

Wk(g, ψ, t)lglψdgdψ = 1. (28)

Two time scales are present in the Fokker-Planck equation
(Eqs. (21, 24)), which are well-separated when α and ν2

(∼α) are small parameters: a fast time scale connected to
the fast precessional drift and described by the first term
in the probability current Jk,ψ (Eq. (24)), and a slow time
scale connected to slow relaxation and diffusion, described
by all other terms (which are proportional to α), in equa-
tions (23) and (24). The existence of two distinct time
scales can be used to derive an approximate description
of the diffusion process based on the averaging technique.
This idea has been already applied to the deterministic
magnetization dynamics at the end of the previous sec-
tion. The starting point for the averaging analysis is to
write the probability density ρk(g, ψ, t) as:

ρk(g, ψ, t) = ρk(ψ, t|g)ρk(g, t), (29)

where ρk(ψ, t|g) is the conditional probability density un-
der given energy and:

ρk(g, t) =
∫ 2π

0

ρk(g, ψ, t)dψ. (30)

By taking into account equations (19, 20), and (22), equa-
tion (30) can be written in the line-integral form:

ρk(g, t) =
∮
Ck(g)

W (m, t)
|∇ΣgL| dmψ. (31)

In the limit of small α, the energy remains practically con-
stant for a large number of periods of oscillation and ap-
preciable time variations of ρk(g, t) are expected to occur
only on a time scale of the order of 1/α. This scale is sug-
gested by the fact that Jk,g is proportional to α. In fact,
by integrating equation (21) with respect to ψ in the in-
terval [0, 2π] and taking into account the periodicity of all
quantities with respect to ψ, one obtains that ∂ρk(g, t)/∂t
is first-order in α. On the other hand, the conditional dis-
tribution ρk(ψ, t|g) has a fast time variation regardless of
the smallness of α, that is, ∂ρk(ψ, t|g)/∂t is zeroth-order
with respect to α. According to the above discussion, the
key assumption of the averaging method is that the con-
ditional probability distribution ρk(ψ, t|g) reaches equilib-
rium on the short time scale well before any appreciable
change in ρk(g, t) takes place [40]. Thus, in the long time
scale, ρk(g, ψ, t) takes the form:

ρk(g, ψ, t) = ρeqk (ψ|g)ρk(g, t) + O(α), (32)

where ρeqk (ψ|g) is the distribution obtained when ρk(ψ, t|g)
reaches equilibrium. This equilibrium conditional proba-
bility can be found by computing the time derivative of
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equation (29), substituting it in equation (21), and con-
sidering only the zeroth-order terms with respect to α. In
this way, we obtain the equation:

∂

∂t
ρk(ψ, t|g) =

∂

∂ψ

(
ρk(ψ, t|g)
lglψ

)
. (33)

The stationary solution ρeqk (ψ|g) fulfills the equation:

∂

∂ψ

(
ρeqk (ψ|g)
lglψ

)
= 0, (34)

whose solution is:

ρeqk (ψ|g) = ck(g)lglψ, (35)

where ck(g) is a function of energy to be determined by
the normalization condition:∫ 2π

0

ρeqk (ψ|g)dψ = 1. (36)

By using equations (19, 20, 35), and (36), one finds ck(g) =
1/Tk(g), that is:

ρeqk (ψ|g) =
lglψ
Tk(g)

, (37)

where
Tk(g) =

∮
Ck(g)

dmψ

|∇ΣgL| , (38)

is the period of the conservative precessional motion along
the trajectory Ck(g). One can verify that the equilibrium
conditional probability density, given by equation (37) is
inversely proportional to the velocity of magnetization
precession along Ck(g).

Equations (22, 32), and (37) imply that in the averag-
ing approximation Wk(g, ψ, t) is in fact virtually indepen-
dent of ψ on the long time scale:

Wk(g, ψ, t) =
ρk(g, t)
Tk(g)

+ O(α). (39)

We will denote the dominant part by Wk(g, t):

Wk(g, t) =
ρk(g, t)
Tk(g)

. (40)

By substituting equations (32, 37), and (39) into equa-
tion (21), neglecting all second-order terms in α, integrat-
ing with respect to ψ on [0, 2π], one obtains the averaged
Fokker-Planck equation:

∂ρk(g, t)
∂t

= −∂Jk(g)
∂g

, (41)

where:
Jk(g) =

∮
Ck(g)

Jk,g dmψ . (42)

In terms of Wk(g, t), equations (41) and (42) read:

Tk(g)
∂Wk(g, t)

∂t
= −∂Jk(g)

∂g
, (43)

Jk(g) = −M0
k (g,ha)

(
α
Mk(g,ha, β/α)
M0
k (g,ha)

Wk +
ν2

2
∂Wk

∂g

)
,

(44)
where Mk(g,ha, β/α) and M0

k (g,ha) are the Melnikov
functions defined by equations (25) and (26), while
Wk(g, t) fulfills the normalization condition:

∑
k

∫
Ik

Tk(g)Wk(g, t)dg = 1. (45)

Equations (43) and (44) have to be solved on the graph G.
In this respect, boundary conditions at the graph nodes
are required for the probability distribution and the prob-
ability current [41]. In particular,Wk(g, t) must be contin-
uous on the graph and the sum of all the incoming prob-
ability currents must be zero at each node of the graph.

To study equation (43) we first rewrite the probabil-
ity current Jk in a more useful form by introducing the
function:

Vk(g) =
∫ g

g−k

Mk(u,ha, β/α)
M0
k (u,ha)

du+ dk, (46)

where dk is an arbitrary integrating factor which must be
determined by imposing that Vk(g) is continuous on the
graph G. For example, in the case considered in Figure 2,
V1(gd) = V2(gd) = V3(gd), where gd is the value of the en-
ergy at the saddle d1. In order to simplify the derivation of
the stationary distribution function we multiply both sides
of equation (44) by the integrating factor exp(µVk(g)). We
obtain:

Jk(g) = −ν
2

2
M0
k (g,ha)e−µVk(g) ∂

∂g

[
eµVk(g)Wk

]
, (47)

where µ = 2α/ν2. In this manner, the stationary distri-
bution function W eq

k (g) can be immediately derived by
imposing Jk(g) = 0 into equation (47) and by satisfying
the boundary and normalization conditions. The result is:

W eq
k (g) =

1
Z(µ)

e−µVk(g), (48)

where:
Z(µ) =

∑
k

∫
Ik

e−µVk(g)Tk(g)dg. (49)

The expression of W eq
k (g) (Eq. (48)) is formally coincident

with the usual Boltzmann distribution, where Z(µ) and
Vk(g) play the role of partition function and potential en-
ergy, respectively. However, W eq

k (g) is not an equilibrium
distribution in the statistical mechanical sense but rather
a stationary out-of-equilibrium distribution induced by
the spin-polarized current and, as such, dependent on β/α.

The function Vk(g) has to be considered an “effec-
tive potential” which governs the stochastic dynamics, as
shown in equation (48). The role of Vk(g) in the dynam-
ics of the system is better appreciated by comparing it
with the potential Uk(g) introduced for the deterministic
dynamics (see Eq. (12)). By comparing equation (12) to



442 The European Physical Journal B

Fig. 3. (a) Melnikov functions Mk (bold line) and M0
k (dashed

line) corresponding to energy regions Ik of Figure 2. (b) Sta-
tionary probability distribution W eq

k (bold line) and corre-
sponding effective potential Vk (dashed line). gs: energy min-
imum; gr: energy of unstable limit cycle; ga: energy of stable
limit cycle; gd: energy saddle; gu: energy maximum. [gs, gd]
is the energy interval associated with I1, [gd, gu] is that as-
sociated with I2 and I3. System parameters: Dx = −0.034,
Dy = 0, Dz = 0.68, α = 0.014, P = 0.3, V = 510−25 m3,
µ0Ms = 1.76 T, T = 300 K, ha = 0.2ex, β/α = 0.675.

equation (46) we find that these two potentials are con-
nected by the following equation:

∂Vk
∂g

=
Tk
M0
k

∂Uk
∂g

. (50)

Since both M0
k and Tk are positive-definite quantities, Vk

and Uk exhibit the same distribution of maxima and min-
ima. Therefore, according to equation (48) and the analy-
sis on Uk discussed at the end of the previous section, the
stationary distribution function W eq

k is peaked around the
stable states of the deterministic dynamics. An example
of Vk and W eq

k is shown in Figure 3, whereas in Figure 4
we show how Vk and W eq

k change when the current is in-
creased under fixed external field.

Equation (50) shows that the generalized driving forces
associated with the potentials Uk and Vk are different. The
consequence of this fact is that the stochastic equation for
the energy cannot be obtained by simply adding a noise
term to equation (10). This can be shown by first writing
the Fokker-Planck equation for ρk(g, t) (Eq. (41)), which
is the probability density with respect to g. By making

Fig. 4. Evolution of W eq
k (bold lines) and Vk (dashed lines)

for increasing current and fixed external field. Energy intervals
corresponding to Ik(k = 1, 2, 3) are indicated. System param-
eters: Dx = −0.034, Dy = 0, Dz = 0.68, α = 0.014, P = 0.3,
V = 510−25 m3, µ0Ms = 1.76 T, T = 300 K, ha = 0.08ex. gd:
energy saddle. (a): β/α = 0.5; (b): β/α = 0.66; (c): β/α = 0.8;
(d): β/α = 1.5. These system parameters correspond to those
considered in the case of Figure 3 in [18].

use of equation (39) we obtain:

∂ρk(g, t)
∂t

=
∂

∂g

[(
α
Mk(g)
Tk(g)

− ν2

2Tk(g)
dM0

k (g)
dg

)
ρk(g, t)

]

+
ν2

2
∂2

∂g2

(
M0
k (g)

Tk(g)
ρk(g, t)

)
(51)

(dependencies on ha and β/α are understood). According
to the theory of stochastic processes [37], to equation (51)
there corresponds the Ito stochastic differential equation
for g:

dg

dt
= −

(
α
Mk(g)
Tk(g)

− ν2

2Tk(g)
dM0

k (g)
dg

)
+ ν

√
M0
k (g)

Tk(g)
hN (t),

(52)
where hN(t) represents Gaussian white noise [39]. In the
limit ν → 0, equation (52) reduces to equation (10) for the
deterministic dynamics. On the other hand, when ν 
= 0,
an additional drift term appears in the relaxation pro-
cess for g. This term can only be revealed by the rigorous
analytical treatment previously discussed which involves
the Fokker-Planck equation associated with the diffusion
process on the unit sphere.

Through the effective potential Vk(g), one can intro-
duce the concept of potential barrier separating a stable
fixed point and a limit cycle, although there is no poten-
tial barrier in terms of the free energy gL. As previously
discussed, since stable and unstable states of the deter-
ministic dynamics respectively correspond to minima and
maxima of Vk(g), it is natural to define the potential bar-
rier ∆Vk as:

∆Vk = Vk(gmax) − Vk(gmin), (53)
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where gmax and gmin denote the energy values for the
maximum and minimum of V (g), respectively. For exam-
ple, if the system shows an unstable limit cycle between
a stable limit cycle and a stable fixed point in the energy
region Ik, the potential barrier which has to be overcome
to exit the basin of attraction around the stable point is
given by Vk(gr) − Vk(gs), whereas the potential barrier
which has to be overcome to exit the basin of attraction
around the stable limit cycle is Vk(gr)−Vk(ga), where gs,
ga, and gr denote the energy values of the stable fixed
point, the stable limit cycle, and the unstable limit cycle,
respectively. An example of this situation is shown in Fig-
ure 3. Since the energy values corresponding to limit cy-
cles depend on the injected current through the equations
Mk(ga,ha, β/α) = 0 and Mk(gr,ha, β/α) = 0, the poten-
tial barriers Vk(gr) − Vk(gs) and Vk(gr) − Vk(ga) depend
on the injected current through a nontrivial relationship.
However, if we are interested in the transition from a sta-
ble fixed point to a stable state in another energy region,
the potential barrier to be overcome is Vk(gd) − Vk(gs),
where gd is the energy value of the saddle, which is cur-
rent independent. By applying equation (46) to this case
we obtain:

V1(gd) − V1(gs) = (gd − gs) (1 − Je/Jc), (54)

where Jc is a constant with the dimensions of an electric
density current. Equation (54) shows that in this case the
potential barrier is linearly dependent on injected current.

In the limit of “high-energy barrier” approximation,
that is, µ∆Vk � 1, one can follow the approach introduced
by Brown [23] to compute the transition rate from a basin
of attraction to another [30]. An example will be discussed
in the next section.

4 Uniaxial symmetry

The results discussed in the previous sections acquire a
particularly simple form for systems exhibiting uniaxial
symmetry, that is, systems characterized by the fact that
the free-layer easy axis, the fixed-layer easy axis, and the
external magnetic field directions are all along the z axis
perpendicular to the layer plane, while the layer proper-
ties show uniaxial symmetry around that axis. In partic-
ular, one has that Dx = Dy = D⊥. Systems with this
type of symmetry are of great pedagogical interest and
are also under consideration for possible applications in
data-storage [42].

Thanks to the rotational symmetry around the z-axis,
the LLG equation with Slonczewski spin-transfer term
takes a simpler form and the deterministic dynamics can
be solved in full detail. The effective field takes the expres-
sion heff = [haz − (Dz −D⊥)mz] ez and an independent
equation for the magnetization component along the z axis
exists. From equation (4) one obtains:

dmz

dt
= −α ∂Φ

∂mz
(1 −m2

z), (55)

where it has been taken into account that in this case
ep ≡ ez. It is useful to describe the system in terms
of spherical coordinates (θ, φ), that is, mx = sin θ cosφ,
my = sin θ sinφ, mz = cos θ. In terms of θ, equation (55)
takes the following form:

dθ

dt
= −α∂Φ

∂θ
. (56)

It is clear from equation (56) that the function Φ acts as
an effective potential governing the dynamics of the polar
angle θ. Φ depends on θ only:

Φ(θ;haz , β/α) = gL(θ;haz) +
β

α
ΦST (θ)

=
1
2
(Dz −D⊥) cos2 θ − haz cos θ +

β

α

1
cp

ln(1 + cp cos θ),
(57)

where haz is the intensity of the field applied along the
z axis. From equation (56) we have that fixed points and
limit cycles of the dynamics are all solutions of the equa-
tion ∂Φ/∂θ = 0 under the constraint |cos θ| � 1. In par-
ticular, only two fixed points, θ = 0 and θ = π, exist
and they are always present, for all values of field and in-
jected current. Other solutions of ∂Φ/∂θ = 0 for θ 
= 0
and θ 
= π represent limit cycles in which the magne-
tization precesses around the symmetry axis. The fixed
points and limit cycles are stable if ∂2Φ/∂θ2 > 0 and
unstable if ∂2Φ/∂θ2 < 0. This means that stable fixed
points and limit cycles are minima of the function Φ. Be-
sides, according to the stability diagram discussed in [17],
haz ≈ (Dz−D⊥)/cp and β/α ≈ (1− c2p)(Dz−D⊥)/cp are
the values of field and current around which limit cycles,
that is, self-oscillation regimes, may exist in the dynamics.
Figure 5 shows examples of the behavior of Φ for different
values of the injected current.

In order to study the effect of thermal fluctuations, we
can write the Fokker-Planck equation (Eqs. (15) and (16))
in spherical coordinates (θ, φ):

∂W (θ, φ, t)
∂t

= − 1
sin θ

∂

∂θ
(sin θJθ) − 1

sin θ
∂Jφ
∂φ

, (58)

where:

Jθ = − W

sin θ
∂gL
∂φ

− αW
∂Φ

∂θ
− ν2

2
∂W

∂θ
(59)

Jφ = W
∂gL
∂θ

− αW

sin θ
∂Φ

∂φ
− ν2

2 sin θ
∂W

∂φ
. (60)

By integrating equation (58) over φ and by taking into
account that gL and Φ are independent of φ because of
symmetry, one obtains the equation:

∂P

∂t
=

∂

∂θ

[(
α
∂Φ

∂θ
− ν2

2
cot θ

)
P +

ν2

2
∂P

∂θ

]
, (61)

where P = sin θ
∫ 2π

0
W (θ, φ, t)dφ represents the probabil-

ity density with respect to θ. This Fokker-Planck equation
corresponds to the following Langevin-type equation for θ:

dθ

dt
= −α∂Φ

∂θ
+
ν2

2
cot θ + νhN (t), (62)
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Fig. 5. Evolution of W eq (bold line) and Φ (dashed line) for
increasing current and fixed external field. System parameters:
Dz = 1, D⊥ = 0, α = 0.01, P = 0.3, V = 510−25 m3, µ0Ms =
1 T, T = 300 K, haz = 1.6. (a): β/α = 0.66; (b): β/α = 1.06;
(c): β/α = 1.46; (d): β/α = 1.86.

where hN (t) represents Gaussian white noise. Equa-
tion (62), as equation (52), shows an additional drift term
related to the description of the state in terms of θ.

For uniaxial systems, the vector fields ∇ΣgL and ∇ΣΦ
present in equation (16) are parallel everywhere, as a con-
sequence of the rotational symmetry of the problem. This
leads to the following expression for the stationary distri-
bution function:

W eq(θ) =
1

Z(haz, β/α)
e−µΦ(θ). (63)

We remind that equation (63), as equation (48), despite
its Boltzmann form, does not correspond to equilibrium,
but rather to stationary out-of-equilibrium condition de-
pendent on β/α. An example of the behavior of W eq for
different current values is given in Figure 5.

In the particular case of Figure 5c, θ = π is stable but
θ = 0 is not, which means that, despite the substantial
positive effective field heff = haz − (Dz −D⊥) = 0.6 act-
ing on the nanomagnet, the effect of the current is strong
enough to destroy the stability of the θ = 0 state. Two
limit cycles exist for θ0 � 1.15 and θ0 � 2.23, of which
the former is stable and the latter unstable. The barrier
∆Φ separating these two stable states is ∆Φ ≈ 0.1, corre-
sponding to an energy barrier of the order of 10 kBT for
V = 5 × 10−25 m3, µ0Ms = 1 T, and T = 300 K.

Some remarks can be made at this point. First, we
observe that, thanks to uniaxial symmetry, the approxi-
mations discussed in the previous section, involving the
separation of two time scales, are not required to derive
equations (61–63). Second, since gL and Φ depend on θ
only, the angle θ describes both the magnetization state
and the energy state of the system. By making explicit
the θ dependence in Vk(g(θ)) (Eq. (46)) one finds that

Φ(θ) = Vk(g(θ)). Therefore, in this case, both the deter-
ministic and the stochastic dynamics are governed by the
same potential Φ(θ), as we can observe from equations (56)
and (63). Finally, one can derive expressions for the transi-
tion rate 1/τij from a stable state (θi) to another one (θj)
by following the approach discussed by Brown in [23]. One
finds:

1
τij

= αki sin θm

√
αkm
πν2

e−µ(Φ(θm)−Φ(θi)), (64)

where θm denotes the maximum of Φ included between θi
and θj , ki = Φ′′(θi), and km = −Φ′′(θm). By considering
the case of Figure 5(c), the two stable states are θ1 � 1.15
and θ2 = π, whereas the maximum between them corre-
sponds to the unstable limit cycle for θm � 2.23. In phys-
ical units, the frequencies of transition are f12 ≈ 40 kHz
and f21 ≈ 100 kHz.
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